543 research outputs found

    High resolution observations of Cen A: Yellow and red supergiants in a region of jet-induced star formation?

    Full text link
    We present the analysis of near infrared (NIR), adaptive optics (AO) Subaru and archived HST imaging data of a region near the northern middle lobe (NML) of the Centaurus A (Cen A) jet, at a distance of 15\sim15 kpc north-east (NE) from the center of NGC5128. Low-pass filtering of the NIR images reveals strong -- >3σ>3\sigma above the background mean -- signal at the expected position of the brightest star in the equivalent HST field. Statistical analysis of the NIR background noise suggests that the probability to observe >3σ>3\sigma signal at the same position, in three independent measurements due to stochastic background fluctuations alone is negligible (107%\leq10^{-7}\%) and, therefore, that this signal should reflect the detection of the NIR counterparts of the brightest HST star. An extensive photometric analysis of this star yields VIV-I, visual-NIR, and NIR colors expected from a yellow supergiant (YSG) with an estimated age 103+4\sim10^{+4}_{-3} Myr. Furthermore, the second and third brighter HST stars are, likely, also supergiants in Cen A, with estimated ages 163+6\sim16^{+6}_{-3} Myr and 259+15\sim25^{+15}_{-9} Myr, respectively. The ages of these three supergiants are in good agreement with the ages of the young massive stars that were previously found in the vicinity and are thought to have formed during the later phases of the jet-HI cloud interaction that appears to drive the star formation (SF) in the region for the past 100\sim100 Myr.Comment: 11 pages, 6 figures, 2 tables, accepted for publication in Ap

    The significance of sample mass in the analysis of steroid estrogens in sewage sludges and the derivation of partition coefficients in wastewaters

    Get PDF
    Optimization of an analytical method for determination of steroid estrogens, through minimizing sample size, resulted in recoveries >84%, with relative standard deviations <3% and demonstrated the significance of sample size on method performance. Limits of detection were 2.1–5.3 ng/g. Primary sludges had estrogen concentrations of up to one order of magnitude less than those found in biological sludges (up to 994 ng/g). However, partition coefficients were higher in primary sludges (except estriol), with the most hydrophobic compound (ethinylestradiol) exhibiting the highest Kp value, information which may be of value to those involved in modeling removal during wastewater treatment

    Metagenomic survey of the microbiome of ancient Siberian permafrost and modern Kamchatkan cryosols

    Get PDF
    In the context of global warming, the melting of arctic permafrost raises the threat of a re-emergence of microorganisms some of which were shown to remain viable in ancient frozen soils for up to half a million years. In order to evaluate this risk, it is of interest to acquire a better knowledge of the composition of the microbial communities found in this understudied environment. Here we present a metagenomics analysis of 12 soil samples from Russian Arctic and subarctic pristine areas: Chukotka, Yakutia, and Kamchatka, including 9 permafrost samples collected at various depths. These large datasets (9.2 1011 total bp) were assembled (525,313 contigs > 5kb), their encoded protein contents predicted, then used to perform taxonomical assignments of bacterial, archaeal, and eukaryotic organisms, as well as DNA viruses. The various samples exhibited variable DNA contents and highly diverse taxonomic profiles showing no obvious relationship with their locations, depths or deposit ages. Bacteria represented the largely dominant DNA fraction (95%) in all samples, followed by archaea (3.2%), surprisingly little eukaryotes (0.5%), and viruses (0.4%). Although no common taxonomic pattern was identified, the samples shared unexpected high frequencies of β-lactamase genes, almost 0.9 copy/bacterial genome. In addition of known environmental threats, the particularly intense warming of the Arctic might thus enhance the spread of bacterial antibiotic resistances, today's major challenge in public health. β-lactamases were also observed at high frequency in other types of soils, suggesting their general role in the regulation of bacterial populations

    A Model for Solving the Optimal Water Allocation Problem in River Basins with Network Flow Programming When Introducing Non-Linearities

    Full text link
    [EN] The allocation of water resources between different users is a traditional problem in many river basins. The objective is to obtain the optimal resource distribution and the associated circulating flows through the system. Network flow programming is a common technique for solving this problem. This optimisation procedure has been used many times for developing applications for concrete water systems, as well as for developing complete decision support systems. As long as many aspects of a river basin are not purely linear, the study of non-linearities will also be of great importance in water resources systems optimisation. This paper presents a generalised model for solving the optimal allocation of water resources in schemes where the objectives are minimising the demand deficits, complying with the required flows in the river and storing water in reservoirs. Evaporation from reservoirs and returns from demands are considered, and an iterative methodology is followed to solve these two non-network constraints. The model was applied to the Duero River basin (Spain). Three different network flow algorithms (Out-of-Kilter, RELAX-IVand NETFLO) were used to solve the allocation problem. Certain convergence issues were detected during the iterative process. There is a need to relate the data from the studied systems with the convergence criterion to be able to find the convergence criterion which yields the best results possible without requiring a long calculation time.We thank the Spanish Ministry of Economy and Competitivity (Comision Interministerial de Ciencia y Tecnologia, CICYT) for funding the projects INTEGRAME (contract CGL2009-11798) and SCARCE (program Consolider-Ingenio 2010, project CSD2009-00065). We also thank the European Commission (Directorate-General for Research & Innovation) for funding the project DROUGHT-R&SPI (program FP7-ENV-2011, project 282769). And last, but not least, to the Fundacion Instituto Euromediterraneo del Agua with the project "Estudio de Adaptaciones varias del modelo de optimizacion de gestiones de recursos hidricos Optiges".Haro Monteagudo, D.; Paredes Arquiola, J.; Solera Solera, A.; Andreu Álvarez, J. (2012). A Model for Solving the Optimal Water Allocation Problem in River Basins with Network Flow Programming When Introducing Non-Linearities. Water Resources Management. 26(14):4059-4071. https://doi.org/10.1007/s11269-012-0129-7S405940712614Ahuja R, Magnanti T, Orlin J (1993) Network flows: theory, algorithms and applications. Prentice Hall, New YorkAndreu J, Capilla J, Sanchís E (1996) AQUATOOL, a generalized decision-support system for water resources planning and operational management. J Hydrol 177:269–291Bersetkas D (1985) A unified framework for primal-dual methods in minimum cost network flows problems. Math Program 32:125–145Bersetkas D, Tseng P (1988) The relax codes for linear minimum cost network flow problems. Ann Oper Res 13:125–190Bersetkas D, Tseng P (1994) RELAX-IV: A faster version of the RELAX code for solving minimum cost flow problems. Completion Report under NSFGrant CCR-9103804. Dept. of Electrical Engineering and Computer Science, MIT, BostonChou F, Wu C, Lin C (2006) Simulating multi-reservoir operation rules by network flow model. ASCE Conf Proc 212:33Chung F, Archer M, DeVries J (1989) Network flow algorithm applied to California aqueduct simulation. J Water Resour Plan Manag 115:131–147Ford L, Fulkerson D (1962) Flows in networks. Princeton University Press, PrincetonFredericks J, Labadie J, Altenhofen J (1998) Decision support system for conjunctive stream-aquifer management. J Water Resour Plan Manag 124:69–78Harou JJ, Medellín-Azuara J, Zhu T et al (2010) Economic consequences of optimized water management for a prolonged, severe drought in California. Water Resour Res 46:W05522Hsu N, Cheng K (2002) Network Flow Optimization Model for Basin-Scale Water Supply Planning. J Water Resour Plan Manag 128:102–112Ilich N (1993) Improvement of the return flow allocation in the Water Resources Management Model of Alberta Environment. Can J Civ Eng 20:613–621Ilich N (2009) Limitations of network flow algorithms in river basin modeling. J Water Resour Plan Manag 135:48–55Kennington JL, Helgason RV (1980) Algorithms for network programming. John Wiley and Sons, New YorkKhaliquzzaman, Chander S (1997) Network flow programming model for multireservoir sizing. J Water Resour Plan Manag 123:15–21Kuczera G (1989) Fast Multireservoir Mulltiperiod Linear Programming Models. Water Resour Res 25:169–176Kuczera G (1993) Network linear programming codes for water-supply headworks modeling. J Water Resour Plan Manag 119:412–417Labadie J (2004) Optimal operation of multireservoir systems: state-of-the-art review. J Water Resour Plan Manag 130:93–111Labadie J (2006) MODSIM: river basin management decision support system. In: Singh W, Frevert D (eds) Watershed models. CRC, Boca Raton, pp 569–592Labadie J, Baldo M, Larson R (2000) MODSIM: decision support system for river basin management. Documentation and user manual. Dept. Of Civil Engineering, CSU, Fort CollinsManca A, Sechi G, Zuddas P (2010) Water supply network optimisation using equal flow algorithms. Water Resour Manag 24:3665–3678MMA (2000) Libro blanco del agua en España. Ministerio de Medio Ambiente, Secretaría general Técnica, Centro de PublicacionesMMA (2008) Confederación Hidrográfica del Duero. Memoria 2008. http://www.chduero.es/Inicio/Publicaciones/tabid/159/Default.aspx . Last accessed 25 June 2012Perera B, James B, Kularathna M (2005) computer software tool REALM for sustainable water allocation and management. J Environ Manag 77:291–300Rani D, Moreira M (2010) Simulation-optimization modeling: a survey and potential application in reservoir systems operation. Water Resour Manag 24:1107–1138Reca J, Roldán J, Alcaide M, López R, Camacho E (2001a) Optimisation model for water allocation in deficit irrigation systems I. Description of the model. Agric Water Manag 48:103–116Reca J, Roldán J, Alcaide M, López R, Camacho E (2001b) Optimisation model for water allocation in deficit irrigation systems II. Application to the Bembézar irrigation system. Agric Water Manag 48:117–132Sechi G, Zuddas P (2008) Multiperiod hypergraph models for water systems optimization. Water Resour Manag 22:307–320Sun H, Yeh W, Hsu N, Louie P (1995) Generalized network algorithm for water-supply-system optimization. J Water Resour Plan Manag 121:392–398Wurbs R (1993) Reservoir-system simulation and optimization models. J Water Resour Plan Manag 119:455–472Wurbs R (2005) Modeling river/reservoir system management, water allocation, and supply reliability. J Hydrol 300:100–113Yamout G, El-Fadel M (2005) An optimization approach for multi-sectoral water supply management in the greater Beirut area. Water Resour Manag 19:791–812Yates D, Sieber J, Purkey D, Hubert-Lee A (2005) WEAP21 – a demand-, priority-, and preference-driven water planning model. Part 1: model characteristics. Water Int 30:487–500Zoltay V, Vogel R, Kirshen P, Westphal K (2010) Integrated watershed management modeling: generic optimization model applied to the Ipswich river basin. J Water Resour Plan Manag 136:566–57

    KELT-11b: A Highly Inflated Sub-Saturn Exoplanet Transiting the V=8 Subgiant HD 93396

    Full text link
    We report the discovery of a transiting exoplanet, KELT-11b, orbiting the bright (V=8.0V=8.0) subgiant HD 93396. A global analysis of the system shows that the host star is an evolved subgiant star with Teff=5370±51T_{\rm eff} = 5370\pm51 K, M=1.4380.052+0.061MM_{*} = 1.438_{-0.052}^{+0.061} M_{\odot}, R=2.720.17+0.21RR_{*} = 2.72_{-0.17}^{+0.21} R_{\odot}, log g=3.7270.046+0.040g_*= 3.727_{-0.046}^{+0.040}, and [Fe/H]=0.180±0.075 = 0.180\pm0.075. The planet is a low-mass gas giant in a P=4.736529±0.00006P = 4.736529\pm0.00006 day orbit, with MP=0.195±0.018MJM_{P} = 0.195\pm0.018 M_J, RP=1.370.12+0.15RJR_{P}= 1.37_{-0.12}^{+0.15} R_J, ρP=0.0930.024+0.028\rho_{P} = 0.093_{-0.024}^{+0.028} g cm3^{-3}, surface gravity log gP=2.4070.086+0.080{g_{P}} = 2.407_{-0.086}^{+0.080}, and equilibrium temperature Teq=171246+51T_{eq} = 1712_{-46}^{+51} K. KELT-11 is the brightest known transiting exoplanet host in the southern hemisphere by more than a magnitude, and is the 6th brightest transit host to date. The planet is one of the most inflated planets known, with an exceptionally large atmospheric scale height (2763 km), and an associated size of the expected atmospheric transmission signal of 5.6%. These attributes make the KELT-11 system a valuable target for follow-up and atmospheric characterization, and it promises to become one of the benchmark systems for the study of inflated exoplanets.Comment: 15 pages, Submitted to AAS Journal

    KELT-20b: A Giant Planet With A Period Of P ~ 3.5 Days Transiting The V ~ 7.6 Early A Star HD 185603

    Get PDF
    We report the discovery of KELT-20b, a hot Jupiter transiting a early A star, HD 185603, with an orbital period of days. Archival and follow-up photometry, Gaia parallax, radial velocities, Doppler tomography, and AO imaging were used to confirm the planetary nature of KELT-20b and characterize the system. From global modeling we infer that KELT-20 is a rapidly rotating ( ) A2V star with an effective temperature of K, mass of , radius of , surface gravity of , and age of . The planetary companion has a radius of , a semimajor axis of au, and a linear ephemeris of . We place a upper limit of on the mass of the planet. Doppler tomographic measurements indicate that the planetary orbit normal is well aligned with the projected spin axis of the star ( ). The inclination of the star is constrained to , implying a three-dimensional spin–orbit alignment of . KELT-20b receives an insolation flux of , implying an equilibrium temperature of of ∼2250 K, assuming zero albedo and complete heat redistribution. Due to the high stellar , KELT-20b also receives an ultraviolet (wavelength nm) insolation flux of , possibly indicating significant atmospheric ablation. Together with WASP-33, Kepler-13 A, HAT-P-57, KELT-17, and KELT-9, KELT-20 is the sixth A star host of a transiting giant planet, and the third-brightest host (in V ) of a transiting planet

    A Bright Short Period M-M Eclipsing Binary from the KELT Survey: Magnetic Activity and the Mass–Radius Relationship for M Dwarfs

    Get PDF
    We report the discovery of KELT J041621-620046, a moderately bright (J ~ 10.2) M-dwarf eclipsing binary system at a distance of 39 ± 3 pc. KELT J041621-620046 was first identified as an eclipsing binary using observations from the Kilodegree Extremely Little Telescope (KELT) survey. The system has a short orbital period of ~1.11 days and consists of components with and in nearly circular orbits. The radii of the two stars are and . Full system and orbital properties were determined (to ∼10% error) by conducting an EBOP (Eclipsing Binary Orbit Program) global modeling of the high precision photometric and spectroscopic observations obtained by the KELT Follow-up Network. Each star is larger by 17%–28% and cooler by 4%–10% than predicted by standard (non-magnetic) stellar models. Strong H α emission indicates chromospheric activity in both stars. The observed radii and temperature discrepancies for both components are more consistent with those predicted by empirical relations that account for convective suppression due to magnetic activity
    corecore